25 things you may not know about drives

Drives have been a key technology for industrial engineers for many years, but Matt Handley of Mitsubishi Electric thinks they can be underappreciated. Here he highlights some of the interesting facts about them.

1. Drives save energy, especially on variable torque loads such as fresh water pumps or cooling fans. On these load types, affinity laws describe the relationship between speed and other variables. The power-speed relationship is also referred to as the "˜cube law'. Controlling the flow by reducing the speed means that for a 20 per cent reduction in speed, up to 50 per cent of the energy can be saved. Modern drives feature energy optimisation functions, automatically adjusting on the fly to maximise energy savings. Often the biggest saving comes if a drive can be used to stop a motor altogether or reduce its speed to a very slow idle over a large part of its duty cycle.

2. Pumps are often run at full speed, with the flow being controlled using a mechanical restrictor valve. It is far more energy efficient to fit a drive and vary the pump's speed. The same can be said of fans and louvers. In recent years HVAC engineers have started fitting drives to their many pumps and fans, with most achieving significant energy savings immediately.

3. Drives can be set up to run automatic profiles. For instance, you may want a centrifuge to start slowly and accelerate gently to a first set speed, then quickly ramp up to full speed and hold this for a set time before decelerating fairly quickly to a very slow speed (which assists the tipping out of the contents), then finally stop altogether.

4. The example in (3) is a time-based motion profile, but speed changes can also be implemented with other signals, such as a load change, a moving object breaking a light beam, a temperature variation or a safety alert.

5. Motors, their gearboxes and the equipment they are driving can be subjected to shock loads on start up. A drive can provide a soft starting option, which ensures, for example, a heavily loaded conveyor or a mixer in a viscous liquid comes up to speed relatively slowly. (The term "˜relatively slowly' can cover a range from a fraction of a second to several minutes, depending on the application.)

6. Drives can start loads that are already spinning, even in the wrong direction. A typical example would be a large tunnel ventilation fan which is turning slowly in the natural air flow; a drive can be set up to sense this speed and match it before engaging.

7. Drives benefit from tuning after installation. Some drives are fitted but never tuned, so may provide little by way of user benefits. Some get only basic tuning, others get a thorough tuning. The best are regularly retuned, and this is usually done automatically during normal operations.

8. If used with a feedback device such as an encoder, a drive can often perform at a level of precision that rivals servos.

9. In energy-saving applications returns on investment on the purchase of a drive can be as quick as 6-24 months. The expected life of a drive is over 10 years, so substantial lifetime cost savings are achievable.

10. As a carbon-reducing technology, Enhanced Capital Allowances are available on drives. This effectively reduces their purchase price, speeding up the return on investment. For details see www.carbontrust.com.

11. Drives can work in a standalone mode but also have high-level communications capabilities, so are suitable for use in automated systems, computer-integrated manufacturing, machine-to-machine communications, the Internet of Things and Industry 4.0 installations.

12. The high-speed lifts used to service the upper floors of skyscrapers use finely tuned drives to accelerate the cars up to a great speed, then slow them down and park them precisely at floor level, while providing passengers with a very smooth ride. When the CTF Financial Centre in Guangzhou, China, is opened next year the lifts will ascend at 20m/sec, three times the speed of those in New York's Empire State Building. Originally skyscrapers were constrained to about seven storeys because the steam-driven lifts were so slow.

13. A drive can temporarily run a motor at above its rated power. This means motors can be sized for normal duties, rather than having to be oversized to cope with possible but rare overloads. This can lead to significant energy savings. Up to 95 per cent of motors installed today may be oversized.

14. Total global energy saving potential of drives in use today is reckoned to be 500 Terawatt hours.

15. The power circuits in a large drive generate considerable amounts of heat as a by-product. In the past this tended to be simply vented to atmosphere, but increasingly it is being captured via a heat exchanger and put to work, say preheating water for hand washing.

16. The biggest drive in the world is probably one used in a giant wind tunnel built by NASA to test space vehicles and capable of running at transonic speeds.

17. Drives make cloud computing possible! The massive data centres that host cloud computing need intelligent and adaptable ventilation to constantly optimise the surrounding air temperature and quality.

18. Some of the world's biggest installations of drives are theme parks, which use many, many drives in rides, water pumps, ventilation fans, animatronics, travelators, escalators, car park barriers and security gates. They are also used behind the scenes in air conditioning, conveyors, automated equipment, commercial kitchen equipment, etc.

19. Cruise liners and commercial ships seem to get bigger every year. However, they are now more manoeuvrable than ever, thanks to rotatable, inverter-driven thrusters which allow vessels to turn within their own length.

20. Drives are embedded into HVAC units around the world. They are also vital components in electric vehicles and photovoltaic systems where they work to convert DC current to AC.

21. Large buildings such as office blocks and hospitals can consume huge amounts of energy in heating, cooling, lighting, plumbing, access control, etc. Moves now afoot to reduce their carbon footprints have potential to reduce global warming considerably. Drives are an essential technology in this field.

22. The inverter is generally thought to have been invented by Harry Ward Leonard in 1891. Born in Ohio and a sometime-employee of Thomas Edison, he filed over 100 patents and died while attending the US Institute of Electrical Engineers Annual Dinner in 1915. His DC-to-AC power conversion method used rotary converters or motor-generator sets, and some remained in use until recently. Modern drives began to evolve around about 1970, but it was 10-20 years before electronics and power electronics technologies achieved the levels of capability required for drives to become commonplace.

23. Drives can be installed directly at the motor due to high IP enclosures, providing an easy retrofit option.

24. Drives can be run backwards to act as energy generators. This technique is likely to become more common as a regenerative energy-saving technique.

25. Drives are used extensively in film and theatre for moving stage, scenery and people. When you next sit down to watch that lavish West End production, just have a little think to yourself about what technology is involved in moving all that scenery around"¦.

For more information about drives and drive technology please visit gb3a.mitsubishielectric.com.

Mitsubishi Electric Europe B.V.

Travellers Lane
Hatfield
AL10 8XB
UNITED KINGDOM

+44 (0)1707 288780

automation@meuk.mee.com

https://gb3a.mitsubishielectric.com

More technical articles
19 hours ago
NSK roller guides increase uptime of blow moulding machines
A manufacturer of PET (polyethylene terephthalate) bottles frequently had to replace the linear guides on its blow moulding machines. However, after switching to NSK’s RA series roller guides, there have been no failures for over a year, producing annual cost savings in maintenance, spare parts and downtime of €60,000.
21 hours ago
Design your future at Design Engineering Expo 2022
With innovation at its core, Design Engineering Expo 2022 is the perfect place for forward thinking design engineering professionals to gain insight into new technologies, learn how to improve efficiencies and gain inspiration for ideas they can implement into their workplace, to put them ahead of their competitors and form part of their future strategy.
23 hours ago
Tray handling system gently handles medical-use glass cartridges
Gerresheimer Medical Systems Division produces over one billion high quality, medical grade, glass cartridges every year and central to its new post-production inspection and packaging system is the IEF Werner varioSTACK CF (Clean Factory) tray palletiser.
1 day ago
WDS reinforces stock availability with production machine upgrade
WDS Components has strengthened its stock availability of standard parts and components by upgrading its on-site production machinery.
2 days ago
Bostik present details of new 2K cyanoacrylate prototype
Bostik’s Born2Bond R&D team has released details of a new cyanoacrylate-based adhesive prototype at the ‘in-adhesives’ event, proving how products are being developed for a near-future that will see instant adhesives used for long-term critical applications.
5 days ago
Virtual factory and showroom tours provide access to best practices
Mitsubishi Electric is opening up access to its factory automation sites and showrooms through virtual tours with the aim of overcoming the restrictions on in-person visits caused by the pandemic.
5 days ago
Food-safe, tribo-optimised coating increases packaging throughput
A packaging and processing machinery builder has reduced drag, improved rigidity, increased throughput and raised hygiene standards on one machine family by applying an iglidur IC-05 tribo-coating on a mitre bar application.
5 days ago
Unlocking the benefits of micromotors at Design Engineering Expo
Small DC motor supplier EMS will be exhibiting the Faulhaber BXT-SC series and the AM3248 stepper motor at this year’s Design Engineering Expo, taking place at the NEC in Birmingham on June 8 to 9, 2022.
6 days ago
Advanced Engineering partners with SMMT and ADS
At this year’s Advanced Engineering UK, held at the NEC, Birmingham on 2-3 November, automotive and aerospace businesses will have the opportunity to meet with buyers from the sectors’ leading OEMs.
6 days ago
Telford based supplier has a handle on Truckman Tops
One of the UK’s best-known brands in the automotive aftermarket industry is Truckman, and the company’s new Truckman Classic hardtop for the Isuzu D-Max now features Vector T3 locking handles supplied by Industrilas.

Login / Sign up