Direct versus Indirect measurement of shaft angle
Posted to News on 9th Jul 2013, 12:40

Direct versus Indirect measurement of shaft angle

As a rule, it's preferable to measure directly the position or speed of the object that you are interested in. In many cases, practical problems of physical environment or limited space mean that this can be a challenge, particularly when measuring the angle of shafts with a diameter greater than a couple of inches. The traditional approach is to measure angular position or speed indirectly - typically inferring the shaft's position from measurements made elsewhere. Mark Howard of Zettlex Ltd describes the traditional approach and a new, direct approach enabled by inductive sensors

Direct versus Indirect measurement of shaft angle

Traditional Approach - Indirect Measurement

Potentiometers, resolvers and optical encoders are the most common devices for measuring shaft angle. Potentiometers offer a simple, low-cost option but are unsuitable for harsh environments or continuous rotation. Resolvers are reliable in tough conditions but their high cost and bulk mean that they are rare outside the defence, aerospace, and oil & gas sectors. Optical encoders are not as robust as resolvers but are widely available and keenly priced. Most optical encoders have a small (typically

So how do you measure the angle of a large diameter through-shaft of, say, 3" or larger? Traditionally, a smaller, secondary shaft is driven from the larger primary shaft and the angle of the secondary shaft is measured. In other words, the angle of the primary is measured indirectly or inferred. For many years, this has been the approach in gun turrets, rotary tables, radar antennae, security cameras, large motors, medical scanners and telescopes. As the secondary shaft is smaller, there is a wide choice of rotary encoders. If absolute (rather than incremental) angle of the primary shaft is required, then additional gearing or a multi-turn encoder can be used.

Problems with the Indirect Approach

The angle of the primary shaft is calculated from the angle of the secondary - assuming that their relative rotation is proportional. Not unreasonable? As ever, the devil is in the detail and, in practice, there are problems with this assumption.

As a general rule, if the required measurement accuracy is less than 1 degree, indirect measurement is probably not going to work reliably - or at least not for long. There are two parts to the problem - accuracy and reliability. Inaccuracy comes from the number of factors in the system's tolerance stack up. For a system coupled by gears, these factors include, but are not limited to:

  1. Encoder accuracy
  2. Encoder thermal coefficients - i.e. drift in output due to temperature
  3. Differential thermal expansion in gears, shafts, bearings, mounts, etc.
  4. Gear backlash
  5. Gear wear
  6. Concentricity of gears on shafts
  7. Gear train/tooth strain versus torque
  8. Shaft concentricity
  9. Variation of gear position with shock or vibration
  10. Tolerance on gear tooth position
  11. Tolerance on primary and secondary shaft centres
  12. Variation in shaft centre distance due to load/bearing clearances
  13. Variations from lubrication due to amount, type and viscosity
  14. Mechanical friction - especially stiction
  15. Effect of foreign matter on gear teeth
  16. Twist due to torque in shafts
  17. Shaft bending

Each of these effects alone is probably not a major influence on accuracy. The problem arises because all these effects stack together.

A common misconception in #1 is that an encoder with 1000 counts per revolution is accurate to 1/1000th of a rev. Unfortunately, resolution is not the same as accuracy.

For reliability, most engineers know that the reliability of any mechanical system is proportional to the number of parts in it - especially moving parts. Gear, pulley or chain systems are susceptible to foreign matter. This can often be overlooked by engineers who expect their equipment will be operated within the specified envelope and that all servicing will be carried out by skilled personnel who always replace baffles and seals.

Experience shows this is wishful thinking. Foreign matter often arises from unexpected, sometimes bizarre, conditions. Examples of foreign matter to consider are dust, sand, mud, rain, snow, ice, hail, condensation, insects, rodents, rodent waste, mould, fungus, rogue mechanical tools, rogue mechanical fasteners, swarf, particles, coffee, cola (which is corrosive), pollen, air-borne seeds, vegetation, water residue, smoke/cordite residue, insect faeces/secretions, snails, worms, brake/clutch dust, hair and textile fibres. Far fetched? No - experience shows that unexpected foreign matter is to be expected.

A New Approach - Direct Measurement

As a general rule, if the position of an object is to be measured accurately then the measurement should be made at, or close to, the object. Measuring shaft angle directly simplifies the system and reduces tolerance stack up. The result: improved accuracy and reliability.

So why doesn't everyone use direct measurement? The reason is that, until recently, large bore rotary encoders were disproportionately expensive, delicate and difficult to fit. Ring style optical encoders have been around for years but are expensive, bulky, need careful installation and are prone to failure with foreign matter. Similarly, large bore or "pancake' resolvers have been around for years but their price, complex electrical supply/signal processing and bulk make them unsuitable for most mainstream applications.

However, a new generation of inductive encoders now enables simple, effective and accurate angle measurement for large-diameter shafts. These devices work on similar principles to contactless resolvers and are just as robust and reliable. Rather than wire spools or windings they use printed, laminar windings. These enable a low-profile, annular encoder suited to large through-shafts. Unlike their optical counterparts, these devices do not require precision installation and the electrical interface is straightforward - DC voltage in; absolute digital data out. The mechanical arrangement of these new generation devices is simple and eradicates all gearing. The result is simple, easy-to-install, compact, lightweight, low inertia, accurate and reliable.

For more information about inductive sensors, please email Zettlex UK Ltd at [email protected], or visit the website at www.zettlex.com.


Zettlex UK Ltd

Newton Court, Town Street
Newton
CB22 7ZE
UNITED KINGDOM

+44 (0)1223 874444

Pilz Automation Ltd Lenze Selection (a Division of Lenze Ltd) ABSSAC Ltd Mechan Controls Ltd Matara UK Ltd SICK (UK) LTD Phoenix Contact Ltd Machinesafe Compliance Ltd PI (Physik Instrumente) Ltd Kawasaki Robotics (UK) Ltd AutomateUK Top Hex Ltd Aerotech Ltd Moore International Ltd Heidenhain (GB) Ltd Leuze electronic Ltd AutomateUK Servo Components & Systems Ltd STOBER Drives Ltd Euchner (UK) HARTING Ltd FATH Components Ltd Smartscan Ltd Procter Machine Safety Pilz Automation Ltd Murrelektronik Ltd Spelsberg Els UK Ltd Rittal Ltd Lenze Selection (a Division of Lenze Ltd) Dold Industries Ltd maxon Group