Why you should understand permanent magnet motor technology
Posted to News on 18th Nov 2014, 16:59

Why you should understand permanent magnet motor technology

Every sector of industry strives for improving efficiency and reliability in their equipment, so that they can better serve their customers. One technology set to redefine expectations is the permanent magnet AC motor, which is an increasingly attractive alternative to the currently ubiquitous induction or squirrel cage motor. Rick Munz of Regal assesses its advantages.

Why you should understand permanent magnet motor technology

Permanent magnet motors are not completely new; high-performance servo motors are based on the same concept. But servo motors are expensive and what is new is the emerging class of PM or brushless AC motors. To date induction motors have fulfilled the role of driving equipment such as pumps, fans, compressors, conveyors and production machinery; servo motors are used where the performance requirements justify their extra cost. PM motors bridge the gap between the two ends of the drive spectrum.

PM motors often use ferrite magnets glued onto the rotor and typically outperform standard induction motors by about 25 per cent in terms of both energy efficiency and power density (power-to-volume ratio). If powerful neodymium super magnets are used, performance is 50-100 per cent better than an induction motor.

Permanent magnet synchronous motors (PMSMs) are synchronous with mains frequency, at any torque up to the motor's operating limit. Three-phase PMSMs are permanently excited so are highly responsive to changing load demands. They also have a high overload capability, so are robust and need little maintenance. PMSMs are fitted with an electronic controller, which uses current-switching to both activate the motor and to control its output torque. While the controller is an extra expense, it provides the servo-like control that induction motors lack.

The advantages of a PMSM over an induction motor can be summed up as: better efficiency, more precise speed control, higher power density and reduced operating temperature (resulting in longer bearing and insulation life).

PMSMs are "synchronous machines', i.e. the rotor spins at exactly the same speed as the magnetic field produced by the stator windings, whereas an induction motor has typically 1-3 per cent slip. This synchronicity aids dynamic performance and speed control.

Another advantage of PMSMs is that they typically have a wider speed range than induction motors. As a general rule, PMSMs are rated for 20:1 speed range without feedback or 2000:1 closed loop. However, the drive selection also plays a part in speed range, so each situation has to be considered individually.

PMSM motor losses are around 15-20 per cent lower than induction motors. Depending upon size, electricity price and duty cycle, users can therefore expect to recover the extra cost of a PMSM motor in 3-15 months.

Applications

PMSMs are suitable for almost any application currently serviced by an induction motor, and many where a large (very expensive) servomotor is used. In situations where the primary concern is motor efficiency, centrifugally loaded variable speed applications like fans and pumps become very attractive indeed.

In many cases replacing an induction motor with a PMSM can make the need for extra power transmission equipment, such as belts, chains or gearboxes, redundant - driving up overall system efficiency and reducing initial purchase cost, commissioning time and maintenance commitment.

PMSMs are generally designed to be direct replacements for EC and NEMA induction motors, allowing users to easily switch to modern, high efficiency, low maintenance and reliable motors. With energy prices increasing, many plant operators are switching to PM Motors.

Please visit www.regalbeloit.eu or www.rotor.co.uk to learn more about permanent magnet AC motors.


Rotor (UK) Ltd (Regal Beloit)

Unit 8, 16 Everitt Close
Denington Industrial Estate
NN8 2QF
UNITED KINGDOM

+44 (0)1933 230900

Bosch Rexroth Pilz Automation Ltd Procter Machine Safety ABSSAC Ltd Mechan Controls Ltd SICK (UK) LTD Servo Components & Systems Ltd Spelsberg Els UK Ltd WEG (UK) Ltd Phoenix Contact Ltd Leuze electronic Ltd Heidenhain (GB) Ltd Murrelektronik Ltd Dold Industries Ltd AutomateUK Kawasaki Robotics (UK) Ltd AutomateUK HARTING Ltd Rittal Ltd STOBER Drives Ltd M Buttkereit Ltd Euchner (UK) PI (Physik Instrumente) Ltd Aerotech Ltd Machinesafe Compliance Ltd Smartscan Ltd FATH Components Ltd Micro Epsilon UK Limited